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Appendix A. Supplementary methods and results. 

 

Derivation of evolutionary effects on transmission (Eq. 1c) 

 The equations we use to model epidemics, repeated from the main text, are 
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where St, and It are the densities of susceptibles and infecteds in the population at time t, βt is the 

transmission rate, β t
0   is the nominal transmission rate that is independent of temperature T, and 

v is a measure of the clonal genetic variation in resistance to infection.  Exponents bS and bI 

allow infection rates to scale nonlinearly with densities of susceptible and infected hosts.  

Transmission rate βt can depend on temperature T, as governed by the exponential function in 

Eq. A.1b; larger values of bT result in larger declines in transmission with decreasing 

temperature, as compared to its nominal, temperature independent value, β t
0 .  Here, we derive 

Eq. A.1c. 



 Although not used for fitting data, we need to specify a general equation for the dynamics 

of susceptible Daphnia to derive Eq. A.1c.  We assume the dynamics of the susceptible 

population are governed by the equation 
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where f() is some function giving the dynamics of an uninfected Daphnia population, and Nt is 

the total population density (Nt = St + It).  The per capita fitness, ( )LtLtW −− β~ , for a given 

individual between times t – L and t as a function of transmission rate is 
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Here, we have used ˜ β t  to denote the transmission rate of a particular individual.  Assume that the 

transmission rate among individuals is distributed with mean βt and additive genetic variance 

V(βt).  We allow the variance to depend on the mean, because the transmission rate cannot be 

negative; therefore, as the transmission rate decreases, the variance must as well.  In particular, 

we assume that V(βt) is proportional to the mean, V(βt) = vβt.   

 Assuming that the distribution of transmission rates is symmetrical and the additive 

genetic variance is not too large (Iwasa 1991, Abrams et al. 1993, Abrams 2001), we can use a 

common quantitative genetic based recursion equation to represent change in mean phenotype of 



a trait (here, transmission rate, βt) that is under selection.  Therefore, change in mean 

transmission rate equals the additive genetic variance of that trait, V(βt), times the slope of an 

individual’s fitness with respect to its own transmission rate when evaluated at the value of the 

population mean, all divided by mean fitness ( LtW − ), or 
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If we combine Eq. A.2 and Eq. A.3, we find that mean fitness ( LtW − ) equals the density of 

susceptible hosts at time t divided by total host density at the previous lagged time, or  

LttLt NSW −− = .  Using this simplification, Eq. A.1, and the assumption that genetic variance in 

transmission rate (βt) is proportional to the mean, V(βt) = vβt,, we can derive a dynamic equation 

for transmission rate.  Below, we show the steps of the derivation for interested readers: 
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We start with a very general form of the equation (Eq. A.5a).  Then, we substitute in our derived, 

quantitative-genetics based expression for tβΔ  (from Eq. A.4) to produce Eq. (A.5b), which is 

further simplified with the derived expression for mean fitness, LtW −  (yielding Eq. A.5c).  After 

a little bit of algebra (moving to Eq. A.5d) and substitution of our assumption about genetic 

variance (yielding Eq. A.5e), the derivation is complete.  Note that the final equation provided by 

this process (Eq. A.5e) differs from Eq. A.1c by the inclusion of the lag L in βt–L on the right-

hand side of the equation, rather than βt–1.  For the statistical analyses, we lagged the changes in 

transmission rate by only a single sample rather than L = 3 samples in order to assure smooth 

changes in transmission rates.  This will not change the general results. 

 

Estimation of two types of R2 using the Kalman Filter 

 The Kalman filter uses a two-step procedure for estimating the log density of infected 

individuals.  First, it takes the estimated value of It–L, denoted , along with the associated 

estimate of the transmission rate, to project the dynamics 3 samples forward using Eqs. 1, 

thereby giving .  It then updates this predicted value by comparing it to the observed value It.  

This produces the updated estimate 

LtI −
ˆ

ˆ I t
p

ˆ I t that moves closer to It to the extent allowed by the 

measurement error ηt.  Thus, there are two estimates of It:  and .  Because  predicts It 

using only information from generation t, the errors εt = It –  include process errors εi,t and 

measurement error η(t).  Because 
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ˆ I t  predicts It after factoring out measurement error, the errors 

ˆ ε t = –  include only process error.  The two R2 values are: (i) prediction R2 for It = 1 – var εt 

/var[It – It–l] (Harvey 1989), and (ii) process error prediction R2 for = 1 – var
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The former is the equivalent of the R2 for L-step-ahead predictions, and the latter is equivalent to 

the L-step-ahead predictions after factoring out unavoidable measurement error. 

 

Transmission of Metschnikowia 

 Our analysis indicates that transmission is nonlinear in both S and I.  In Eq. 1a, the 

exponents bS and bI allow for transmission that is not directly proportional to S or I, respectively. 

Our estimate for bS is –0.07 indicating that the density of infected individuals is slightly 

negatively related to the density of susceptible hosts when infection would have occurred, that is, 

at time t – L where L is the time lag required for the incubation of infections (9-12 d).  Our 

estimate of bI = 0.91 indicates that the density of infected individuals increases almost linearly 

with the density of infected individuals at a lag of L.  Infected individuals at time t – L are 

unlikely to live to time t, so this suggests individuals who are infected at time t – L infect other 

(susceptible) hosts at that time, and those hosts then appear as infected at time t. 

 

Effect of temperature on transmission rate 

 In an earlier laboratory study, we showed that temperature influences transmission rate 

(Hall et al. 2006).  That study included two experiments with four temperature treatments, and 

we fit the infection data produced from each to an Arrhenius function.  Because those Arrhenius-

function-based results eventually pointed to a role for temperature in disease dynamics, our 

present model includes an effect of temperature on transmission rate -- but using an exponential 

rather than an Arrhenius function ( bT ; Eq. 1b).  Our current estimate of bT for the model that 

includes temperature but not evolution is 0.17 (Table A1).  Since this exponential function 

differed from the one used in the original paper (Arrhenius), we re-estimated bT from those lab 



experiments.  More specifically, we fit an exponential temperature-based differential equation 

model using a binomial likelihood function (see Hall et al. 2006 Appendix B for more methods).  

The estimates for the experiments from Hall et al. (2006) are 0.20 (for all temperature 

treatments) and 0.23 (excluding the 10°C treatment) from “experiment 1”, and 0.18 (all 

temperature treatments) and 0.075 (excluding the 10°C treatment) from “experiment 2”.  Thus, 

there is a remarkable concordance between our lab and field estimates of this exponent relating 

transmission rate with temperature. 
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TABLE A1: Parameter estimates for the three models of epidemic dynamics.  “TR” = 

transmission rate. 

 

Parameter Symbol 

Full 

model 

Excluding 

evolution (v = 0) 

Excluding 

temperature (bT = 0) 

TR exponent, infected class bI 0.92 0.91 0.91 

TR exponent, susceptible class bS -0.08 0.01 -0.1 

TR exponent, temp. function bT 0.10 0.17 - 

Genetic (clonal) variance in TR v 0.48 - 0.82 

Baseline TR, Baker ‘03  β1,0
0 3.84 1.44 5.4 

Baseline TR, Bassett ‘03  β2,0
0 4.18 1.59 5.92 

Baseline TR, Bassett ‘04  β3,0
0 5.99 2 8.57 

Baseline TR, Bristol ‘04  β4,0
0 6.21 1.88 9.11 

Baseline TR, Warner ‘03  β5,0
0 5.35 1.97 7.44 

Process errors, infected class σI
2 0.31 0.34 0.32 

 


